Expansion algorithm for the density matrix
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولDensity Matrix Expansion for Low-Momentum Interactions
A first step toward a universal nuclear energy density functional based on lowmomentum interactions is taken using the density matrix expansion (DME) of Negele and Vautherin. The DME is adapted for non-local momentum-space potentials and generalized to include local three-body interactions. Different prescriptions for the three-body DME are compared. Exploratory results are given at the Hartree...
متن کاملAN ALGORITHM FOR FINDING THE EIGENPAIRS OF A SYMMETRIC MATRIX
The purpose of this paper is to show that ideas and techniques of the homotopy continuation method can be used to find the complete set of eigenpairs of a symmetric matrix. The homotopy defined by Chow, Mallet- Paret and York [I] may be used to solve this problem with 2""-n curves diverging to infinity which for large n causes a great inefficiency. M. Chu 121 introduced a homotopy equation...
متن کاملHartree Fock Calculations in the Density Matrix Expansion Approach
The density matrix expansion is used to derive a local energy density functional for finite range interactions with a realistic meson exchange structure. Exchange contributions are treated in a local momentum approximation. A generalized Slater approximation is used for the density matrix where an effective local Fermi momentum is chosen such that the next to leading order off-diagonal term is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2002
ISSN: 0163-1829,1095-3795
DOI: 10.1103/physrevb.66.155115